Weighted Bergman Kernels and Quantization

نویسندگان

  • Miroslav Englǐs
  • Miroslav Engliš
چکیده

Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0(x, x) = det [ − ∂ 2 log φ(x) ∂zj∂zk ] , for x, y near z, where φ(x, y) is an almost-analytic extension of φ(x) = φ(x, x) and similarly for ψ. If in addition Ω is of finite type, φ, ψ behave reasonably at the boundary and − log φ,− logψ are strictly plurisubharmonic on Ω, we obtain also an analogous asymptotic expansion for the Berezin transform and give applications to the Berezin quantization. Finally, for Ω smoothly bounded and strictly pseudoconvex and φ a smooth strictly plurisubharmonic defining function for Ω, we also obtain results about the Berezin-Toeplitz quantization on Ω. Let Ω be a domain in C , ρ a positive continuous function on Ω, and Kρ the reproducing kernel of the weighted Bergman space A(Ω, ρ) of all holomorphic functions on Ω squareintegrable with respect to the measure ρ(z) dz, dz being the Euclidean volume element in C ; we call Kρ the weighted Bergman kernel corresponding to ρ, and for ρ ≡ 1 we will speak simply of the Bergman kernel KΩ of Ω. The Berezin transform Bρ is the integral operator defined by Bρf(y) = ∫ Ω f(x) |Kρ(x, y)|2 Kρ(y, y) ρ(x) dx (1) for all y for which Kρ(y, y) 6= 0. In terms of the operator Mf of multiplication by f on the space L(Ω, ρ dz) this can be rewritten as Bρf(y) = 〈MfKρ(·, y),Kρ(·, y)〉 ‖Kρ(·, y)‖2 , from which it is immediate that the integral (1) converges, for instance, for any bounded measurable function f . The Berezin transform was first introduced by F.A. Berezin [Ber] in the context of quantization of Kähler manifolds. More specifically, let φ be a positive function on Ω such that − log φ is strictly plurisubharmonic, and set gjk = ∂ (− log φ)/∂zj∂zk (2) 2000 Mathematics Subject Classification. Primary 32A25, 53D55; Secondary 32A07, 32W05, 47B35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Berezin Quantization and Reproducing Kernels on Complex Domains

Let Ω be a non-compact complex manifold of dimension n, ω = ∂∂Ψ a Kähler form on Ω, and Kα(x, y) the reproducing kernel for the Bergman space Aα of all analytic functions on Ω square-integrable against the measure e−αΨ|ωn|. Under the condition Kα(x, x) = λαe αΨ(x) F. A. Berezin [Math. USSR Izvestiya 8 (1974), 1109–1163] was able to establish a quantization procedure on (Ω, ω) which has recently...

متن کامل

Toeplitz Operators and Weighted Bergman Kernels

For a smoothly bounded strictly pseudoconvex domain, we describe the boundary singularity of weighted Bergman kernels with respect to weights behaving like a power (possibly fractional) of a defining function, and, more generally, of the reproducing kernels of Sobolev spaces of holomorphic functions of any real order. This generalizes the classical result of Fefferman for the unweighted Bergman...

متن کامل

Weighted Bergman kernels on orbifolds

We describe a notion of ampleness for line bundles on orbifolds with cyclic quotient singularities that is related to embeddings in weighted projective space, and prove a global asymptotic expansion for a weighted Bergman kernel associated to such a line bundle.

متن کامل

m at h . D G ] 2 4 Ju l 2 00 6 BERGMAN KERNELS AND SYMPLECTIC REDUCTION

We generalize several recent results concerning the asymptotic expansions of Bergman kernels to the framework of geometric quantization and establish an asymptotic symplectic identification property. More precisely, we study the asymptotic expansion of the G-invariant Bergman kernel of the spinc Dirac operator associated with high tensor powers of a positive line bundle on a symplectic manifold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000